
www.manaraa.com

Information Processing Letters 29 (1988) 155-163

North-Holland

26 October 1988

DYNAMIC PROGRAM SLICING *

Bogdan KOREL
Department of Computer Science, Wayne State University, Detroit, MI 48202, U.S.A.

Janusz LASKI

Department of Computer Science and Engineering, Oakland Uniuersiiy, Rochester, MI 48063, U.S.A.

Communicated by W.L. Van der Poe1

Received 11 September 1987

A dynamic program slice is an executable subset of the original program that produces the same computations on a subset
of selected variables and inputs. It differs from the static slice (Weiser, 1982, 1984) in that it is entirely defined on the basis of

a computation. The two main advantages are the following: Arrays and dynamic data structures can be handled more

precisely and the size of slice can be significantly reduced, leading to a finer localization of the fault. The approach is being

investigated as a possible extension of the debugging capabilities of STAD, a recently developed System for Testing and

Debugging (Korel and Laski, 1987; La&i, 1987).

Keywords: Slicing, dynamic slice, trajectory, data dependence, control dependence, debugging

1. Introduction

A slice S of a program P is an executable
subset of P that computes the same function as P

does in a subset of variables, at some selected
point of interest [19,23,24]. Slicing has been shown
useful in program debugging by narrowing the size
of the suspected piece of incorrect code. As origi-
nally introduced [23,24], it is a static concept: it
involves all potential terminating program execu-
tions, including those which are infeasible. In de-
bugging practice, however, we typically deal with
a particular incorrect execution and, consequently,
are interested in locating the cause of incor-
rectness (programming fault) of that execution.
For this reason we are interested in a slice that
preserves the program’s behavior for a specific
input, rather than that for the set of all inputs for
which the program terminates. This type of pro-

* This research was partly supported by the National Science
Foundation under Grant No. ECS-82-18072.

gram slice, which we call a dynamic one, is intro-
duced in this paper.

It is shown that dynamic slicing provides a
finer localization information. A static slice very
often contains statements which have no influence
on the values of variables of interest. A dynamic
slice can be considered a refinement of the static
one: By applying dynamic analysis it is easier to
identify those statements in the static slice which
do not have influence on the variables of interest.
By reducing the searching space for the fault in
the program, one can more efficiently localize it.

In this paper we also investigate the dynamic
handling of arrays in slicing. In the static ap-
proach, an entire array is treated as a single varia-
ble, i.e., each definition or use of any array ele-
ment is treated as a definition or use of the entire
array. While this method is easy to implement, it
fails to take into account any information about
particular array elements. This can lead to the
inclusion of statements which do not have any
influence on the values of certain array elements.

0020-0190/88/$3.50 0 1988, Elsevier Science Publishers B.V. (North-Holland) 155

www.manaraa.com

Volume 29, Number 3 INFORMATION PROCESSING LETTERS 26 October 1988

As a result, the slice can be unnecessarily large. In
our approach, every array element is treated as a
separate variable. This is due to the fact that,
during program execution, it is possible to de-
termine the value of an array subscript and, there-
fore, to determine which array elements are used
or modified at every point of program execution.
In the concluding Section 5 we also comment on a
possible application of the method to other struc-
tured data.

The reader is assumed to be familiar with the
original static concept of program slicing [23,24].
In what follows, + stands for set union.

2. Background

A flowgraph of a program P is a directed
graph C = (N, A, en, ex), where N is a set of
nodes, A is a binary relation on N (a subset of
N x N) referred to as the set of arcs, and en and

ex are, respectively, a unique entry and a unique
exit node, en, ex E N.

For the sake of simplicity we restrict our analy-
sis to a subset of structured PASCAL-like program-
ming language constructs, namely: sequencing,
if-then-else, and while-loop. A node in N corre-
sponds to a smallest, not further decomposable,
single-entry single-exit executable part of a state-
ment in P, referred to as an instruction. It can be,
for example, an assignment statement, an input or
an output statement, or the (expression) part of
an if-then-else or while statement, in which case
it is called a test instruction.

An arc (n, m) E A corresponds to a possible
transfer of control from instruction n to instruc-
tion m. A path from the entry node en to some
node I, I E N, is a finite sequence (n,, n2,. . . , n4)

of instructions, such that n, = en, n4 = 1, and

(nrr ni+l> is in A for all ni, 1 < i < q. If n4 = ex,

then the path is a program path. A path is feasible

if there exists input data which causes the path to

var n, i, j, p: integer; a: array[l..lO] of integer;

1
2

3
4

5

6

7
8

9
10

11

12
13
14

15

input(n,a);
i:= I;

while i < n do begin
ruin := a[i];
p := i;

j:= j+1;

while j < = n do begin

if a[j] < min then begin,
min := a[j];
p:=j;

end;
j:=j+ 1;

end;
a[p] := a[i];

a[i] := min;
j:= j+l;

end;
output(a);

Fig. 1. A sorting program.

156

www.manaraa.com

Volume 29, Number 3 INFORMATION PROCESSING LETTERS 26 October 1988

Instruction Instruction

number text

1’ input(n, a)
22 i := 1

33 i<n

44 mix-i := * a[i] / min := a[l] * /

Zj5 p := i

66 j:=i+l

7’ j< =?I

8’ a[j] < min /* a[2]<min*/
119 j:=j+ 1

7 10 j< =,,

12” a[pJ := a[i] / * a[11 := a[11 * /

1312 u[i] / := min * a[11 := min * /
1413 i:=i+ 1

3 14 i<tl

1515 output(u)

Trajectory T= (1, 2, 3, 4, 5, 6, 7, 8, 11, 7, 12, 13, 14, 3, 15)

Fig. 2. A trajectory of the program from Fig. 1 on input data n = 2, a = (2.4).

be traversed during program execution. A feasible
path that has actuahy been executed for some
input will be referred to as a trajectory. For exam-
ple, if the program in Fig. 1 is executed on the
input i = (n, a) = (2, (2, 4)), the trajectory T in
Fig. 2 is traversed. An executed program path is a
program trajectory. Observe that a trajectory can
be an initial (finite) segment of an ‘infinite’ path if
the execution involved does not terminate.

In the deterministic case, the trajectory is
uniquely determined by the input while in the
nonderministic case (e.g., referencing an uninitial-
ized variable) there might be many trajectories for
the same input. In either case, however, there are
many inputs that give rise to the same trajectory.
In what follows we assume the deterministic case.

Notationally, T is an abstract list [9] whose

elements are accessed by position, for example, for
T in Fig. 2 we have T(5) = 5, T(9) = 11, and
T(14) = 3. To handle multiple occurrences of the
same instructions in the trajectory (for instance,
instruction 3 appears twice in T in Fig. 2), every
instruction is characterized by its position in the

sequence. Let N(T) be the set of pairs (instruction
in T, its position in T) defined as follows:

N(T)= {(X, p): XEN, T(p)=X}.

An (X, p) will be written down as XP and inter-
preted as “an instruction X at the execution posi-
tion p”. For instance, 33 and 314 are two occur-
rences of instruction 3 in the trajectory T shown
in Fig. 2.

The following dataflow concepts are of dy-
namic nature because they are defined with re-
spect to the trajectory T, rather than to the flow-
graph itself.

A use of variable u is an instruction Xp in
which this variable is referenced. A definition of
variable u is an instruction Xp which assigns a
value to that variable.

In the framework of static program analysis, an
assignment to an array element is treated as a
definition of the entire array. This does not seem a
real obstacle in program optimization, the first
area of application of data flow analysis [1,2,3,7,
lo]. It does cause serious problems, however, in

157

www.manaraa.com

Volume 29, Number 3 INFORMATION PROCESSING LETTERS 26 October 1988

1 i:=l.

2 j:=21

3 read(k);
4 while i < 3 do begin

5 a[i] := a[j] * a[/~];

6 i:=i+l;

7 j:=j+$

8 k:=k+3;
end;

T= (1, 2, 3, 4, 5,6, 7, 8, 4, 5, 6, 7, 8, 4)

Fig. 3. A sample program and a trajectory for k = 2.

data flow testing and debugging, where it is highly
desirable to identify the particular array entries
manipulated by the program [ll-171. It is pre-
cisely what the dynamic approach makes possible.
In it, every array element is treated as a separate
variable. For example, the following is the set of
all variables in the program in Fig. 1,

{n, i, j, P, mm, a[l], a[2],..., a[lo]}.

Let U(Xp) be the set of variables whose values
are used in Xp and D(Xp) be the set of variables
whose values are defined in Xp. It is essential to
observe that, unlike their static counterparts, these
sets are dynamic. Clearly, given two occurrences
Xp and X4 of the same instruction X, these sets
might be different in each case. If X handles an
array, and every array element is treated as a
separate variable, then at each execution of X
different entries in the array might be used or
defined. For example, during the first execution of
instruction 5 of the program of Fig. 3 the follow-
ing variables are used and defined:

u(55) = {i, j, k, a[2]}, D(55) = { u[l]}.

However, during the second execution of the same
instruction, we have

u(5”) = {i, j, k, a[4], a[5l>,

D(5’O)= {u[2]}.

158

The dynamic nature of the sets U and D is in
contrast with their counterparts in static analysis.
In the case of our simple language it is due to the
dynamic treatment of arrays. For example, the
static analysis of the program in Fig. 3 would
render

u(5) = {a, j, j, k}, D(5) = {u}.

It is worth noting, however, that if nodes in the
graph correspond to procedure calls or some
single-entry single-exit compound statements
rather than instructions, the dynamic parts of the
sets U and D might also involve scalar variables.

It is assumed that the sets U and D for each
instruction in the trajectory can be identified
through program instrumentation.

2.1. Definition. Given a trajectory T, an instruc-
tion Xp is the lust definition of variable u at
execution position q in T iff u E D(XJ’) and, for
all k, p<k<q, uPD(Yk).

The last definition XP of u at q is then the
unique instruction which has last assigned a value
to variable u when q is reached on T. For in-
stance, in the execution trace of Fig. 2, 22 is the
last definition of variable i at execution position
6.

The last definition is also a reaching one in the
static sense [8]. The opposite, however, is not
necessarily true. A reaching definition is defined
in terms of the flowgraph only, rather than in
those of a trajectory. Therefore, it is only poten-
tially last and, moreover, it might also be infeasi-
ble.

3. Dynamic slice

Intuitively, a dynamic slice is an executable
part of the program whose behavior is identical to
that of the original program with respect to a
subset of variables of interest and at execution
position q. Such a ‘view of interest’ is captured by
the following definition.

3.1. Definition. Let T be the trajectory of program
P on input x. A slicing criterion of program P

www.manaraa.com

Volume 29. Number 3 INFORMATION PROCESSING LETTERS 26 October 1988

executed on input x is a triple C = (x, Zq, V),
where Z is an instruction at position q on T and V
is a subset of variables in P.

Observe that the corresponding static slicing
criterion [24] is just a pair (I, V). Clearly, our
slicing criterion is defined w.r.t. a given trajectory
on a specific input x rather than w.r.t. the set of
all possible paths in the flowgraph. Yet another
difference is in the interpretation of the ‘position
of interest’. In the static case, this is instruction I
in P; in our case, this is instruction Z at execution

position q in trajectory T.
Typically, the set V contains those variables in

the program that have been found incorrect at q.
The slice is then used to locate the cause of the
incorrectness. I/ might be, however, a set of varia-
bles that are correct at q, too; the slice might then
be used for verification purposes.

To formally define the dynamic slice we need
some definitions of list operations.

Let T= (X,, X,,..., X,) be a trajectory of
length m and let q be a position in T, 1 6 q 6 m.
By F(T, q) we denote the front of T w.r.t. q, i.e.,
a sublist (X,, X,,..., X4), containing the first q
elements of T [9]. Correspondingly, B(T, q), the
back of T w.r.t. q, is the sublist (X,+1,. . . , X,),
containing elements that follow T(q). We have, of
course, T = F(T, q) 11 B(T, q), where 11 stands for
the concatenation of lists. By DEL(T, r), where r
is a predicate on the set of instructions in T, we
mean a subtrajectory obtained from T by deleting
from it all elements T(i) that satisfy r. In other
words, DEL(T, r) is the result of an exhaustive
application of the delete operation to elements
T(i) that satisfy r(T(i)).

3.2. Definition. Let C = (x, 14, V) be a slicing
criterion of program P and T a trajectory of P on
input x. A dynamic slice of P on C is any executa-
ble program P’ that is obtained from P by delet-
ing zero or more statements from it and, when
executed on input x, produces a trajectory T’ for
which there exists an execution position q’ such
that:

(1) F(T’, q’) = DEL(F(T, q), T(i) 65 N’ and

1 <iGq),

(2) for all u E V, the value of u before the
execution of instruction T(q) in T equals the
value of u before the execution of instruction

T’(q’) in T’,

(3) T’(d) = T(q) = 1,
where N’ is a set of instructions in P’.

The following observations clarify some salient
properties of the dynamic slice.

First, a dynamic slice partially replicates the

front of T (w.r.t. q). Clearly, we are interested in
the partial reproduction of the behavior of pro-
gram P up to the execution position q. Moreover,
dynamic slice preserves the number of occurrences
of instructions in the trajectories T and T’. For
instance, if a loop in P iterates five times, then we
require that the same loop, if included in P’, also
iterates five times. But, these requirements do not
necessarily hold for the back of T and T’ (past
the execution positions q and q’, respectively).
Indeed, the absence of some instructions in P’
might cause unpredictable control flow patterns in
T’ when the execution continues past q’.

Second, it is required that instruction Zq appear
in the slice. This is in contrast to the static defini-
tion of slice in which that instruction does not
necessarily appear [24]. Our experience with static
slices shows that the programmer can be lost if
statement Z is not included in the slice, particu-
larly if Z is in a loop. We feel therefore that
including it into the slice is more realistic for
debugging purposes.

Third, the fact that all variables in V have the
same values at q in T and at q’ in T’ does not
necessarily guarantee that variables not in V will
have the same values at those positions nor that
those in V itself will have the same values along T
and T’ (except at q and q’).

There can be many different dynamic slices for
a given program and a slicing criterion, and there
is always at least one such a slice: The entire
program itself.

3.3. Definition. Let C be a slicing criterion of
program P executed on input x. A dynamic slice
DS of P on C is statement-minimal if no other
dynamic slice of P on C has fewer statements
than DS.

159

www.manaraa.com

Volume 29, Number 3 INFORMATION PROCESSING LETI-ERS 26 October 1988

As in the case of static slices, the problem of
finding statement-minimal dynamic slice is unde-
cidable [24]. However, data flow analysis can be
used to construct conservative slices, guaranteed
to have the slice properties but with, perhaps, too
many statements.

4. Finding dynamic slice

Intuitively, given a slicing criterion C = (x, Iq,

V), a dynamic slice contains only those instruc-
tions from N that (i) influence the variables in V
at 4, and (ii) appear in T. Data flow analysis
along T can help in finding them by tracing back-
wards some well-defined dependencies between
instructions in T. This can be done in two steps.
First, find a subtrajectory T’ of T that meets the
criteria of Definition 3.2 and then reconstruct a
P’ from T’.

The identification of T’ is equivalent to find-
ing a subset of N(T) that contains all instructions
in the trajectory T which have influence on V at q

and guarantee that I4 is reached in the first place.
Such a subset will be referred to as the slicing set,

denoted S,.
To capture the intuitive notion of influence we

introduce two types of dependence relations be-
tween program instructions in the trajectory T.

These relations formally define the properties that
instructions in N(T) must meet to be in a slice.
The relations are constructive in the sense that
they can be used to formulate an algorithm, how-
ever inefficient it might be [ll].

Let C = (x, Zq, V) be a slicing criterion. In
what follows we introduce two types of influences
(dependences) between instructions in the front of
T w.r.t. q. Those are the Data-Data and Test-
Control binary relations on N,(T), where

NC(T)={XP:XP~N(T)andl~p<q}.

Clearly, we are only interested in the instructions
in the front of the trajectory T, up to the execu-
tion position q.

The DD (Data-Data) Relation. The DD relation
models a situation where one instruction assigns a

160

DD(1’) = {33, 44, 7’, 8’, 7”, 1211, 314, 1515}
DD(22) = {33, 44, 55, 66, 1211, 1312, 1413}
DD(44) = {8’, 1312}
DD(55) = {1211}
DD(66) = {7’, 8*, 119}
DD(119) = {71°}
DD(1312) = {1515}
DD(1413) = { 314}

Fig. 4. The DD relation for the trajectory of Fig. 2 and the

slicing criterion C = (x, 1515, (a[2])), where x = (n, a) =

(2, (2,4)). Notation: DD(k) = {I: k DD I).

value to an item of data and the other instruction
uses that value. For instance, in the execution
trace of Fig. 2, instruction 22 assigns a value to
variable i and instruction 66 uses that value.
’ DD is a binary relation on N,(T) defined as

follows:

Xp DD y’, 1 <p < t < q, iff there exists a
variable u such that: (1) u E U(y’), and (2)
Xp is the last definition of u at t.

Fig. 4 shows the DD relation for the trajectory
in Fig. 2 and the slicing criterion C = (x, 1515,

{@II).
Observe that, appearances to the contrary, the

DD relation is not a subset of the set of static
definition-use chains [7].

The TC (Test-Control) Relation. The TC relation
captures the dependence between test instructions
and the instructions which can be chosen to ex-
ecute or not execute by these test instructions. For
instance, test instruction 8 in the program of Fig.
1 has ‘influence’ on the execution of instruction 9,
but it has no influence on the execution of instruc-
tion 11. To define the TC relation, we need the
following notion of the scope of influence for the if
and while statements [ll].

(4 if X then Bl else B2; instruction Y is in the
scope of influence of X iff Y appears in Bl or
B2,

www.manaraa.com

Volume 29, Number 3 INFORMATION PROCESSING LETTERS 26 October 1988

TC(33) = {44, ?, 66, 77, g8, 119, 71°, 1211, 1312, 1413, 314}
TC(77) = {8’, 119, 71°}
TC(314) = TC(71°) = { }

Fig. 5. TC relation for the program of Fig. 1 and the slicing criterion C = (x, 1515, (a[Z]}), x = (n, a) = (2, (2,4)).

(b) while X do B; instruction Y is in the scope of
influence of X iff Y is in B or X= Y.

In the program of Fig. 1, instruction 6 is in the
scope of influence of test instruction 3, but in-
struction 15 is not in the scope of influence of
instruction 3. Observe that the test instruction X
of a while-loop is in the scope of influence of itself
because every execution of X has influence on the
next execution of X. For instance, in the trajectory
of Fig. 2 the outcome of the test instruction 33
influences the execution of 314.

TC is a binary relation on N,(T) defined as
follows:

XPTCy’, lgp<t<q, iff (1) Y is in the
scope of influence of X, and (2) for all k,

p < k -c t, T(k) is in the scope of influence
of x.

The TC relation for the trajectory in Fig. 2 is
shown in Fig. 5.

The relations DD and TC capture the in-
fluences that exist between instructions in the
trajectory. They fail, however, to guarantee that
the number of occurrences of an instruction in T

(between 1 and q) and T’ (between 1 and q’) are
the same, a property that follows from condition
(1) of Definition 3.2. Towards that goal we define
the Zdentity Relation IR on N,(T) as follows:

XP IRy’, 1 <p, t < q, iff X= Y.

For example, for the trajectory of Fig. 2 we have
33 IR 314 and 7’ IR71°; observe that IR is symmet-
ric, for example 314 IR 33 holds, too.

To find S, we first find a set A0 of all instruc-
tions that have a direct influence on V at q and on
the execution of instruction Zq. We have

A0 = LD(q, V) + LT(Zq),

where LD(q, V) is the set of last definitions of
variables in V at execution position q, and LT(Zq)

is the set of test instructions which have control
influence on the execution of Z4. More formally,
we can state

LD(q, v) = { xp EN,-(T):thereexistsa UE V

such that xp is the last definition of u at q }

and

LT(Zq)= {X-&(T): Xp TCZq}.

We will find S, iteratively, as a limit of the
sequence So, S’, . . . , S”, 0 6 n c q, defined as fol-
lows:

so = AO,
s'+l = s’+A’+l,

where

A I+1 = {X”E&.(T):

(1) XP $G S’, and

(2) thereexistsa Y’EA’, p, t<q,

xp (DD+TC+IR) y’}.

The sets S’, i = 0, 1,. . . , k, can be thought of as
an increasing sequence of successive approxima-
tions of S,. Each S’ is bounded from above by
N,(T). Eventually, because T is finite, there is an
Aktl = { }, for some k. If the above recursive
definition is the basis for a corresponding search

161

www.manaraa.com

Volume 29, Number 3 INFORMATION PROCESSING LETTERS 26 October 1988

process, that process will always terminate.
According to the postulated properties of a dy-
namic slice in Section 3, instruction P must also
be included in S,. The following will guarantee its
inclusion in the slice:

S,=Pf {P},

where Sk is the limit of sequence {S’}.
The (disjoint) sets A’, i = 0, 1,. . . , n, contain

those instructions that have i-level influence on V
at q. Clearly, instructions in A0 have direct in-
fluence on V at q. Instructions in A’, i > 0, have
indirect influence on I/’ at q by directly influenc-
ing those in A’-‘. Intuitively, the slicing set con-
tains instructions that have direct or indirect in-
fluence on I’ at q and the execution of Iq.

Given S,, the slice is found in a straightfor-
ward way: Inspect instructions in P and select
only those which appear at least once in the
slicing set. Needless to say, to ensure syntactical
correctness all necessary declarations are to be
selected, too.

Example. Consider again the trajectory T in Fig.
2. For the criterion

Cl = (X’ 1515, { a[2]}),

x = (n, a) = (2, (294))

we have

LD(l5, { a[2]}) = {I’}, LT(159 = { },

A0 = {l’}, so= {l’}, A’={ >,

s,, = so+ (1515) = (11, 15i5},

and, finally, the dynamic slice

1 input(n, a);
15 output(u);

For the slicing criterion

c2 = (X’ 1515, { u[l]})

we have

LD(15, { u[l]}) = {1312}, LT(1515) = { },

A0 = {1312}, so = {13i2},

A’ = (22, 33,44},

162

s’ = (22, 33, 44, 13’2},

A2 = {l’, 314},

s* = (11, 22, 33, 44, 1312, 3i4},

A3 = {1413},

s3 = (11, 22, 33, 44, 1312, 1413, 314 })

A4= { },

SC2 = s3 + (1515)

= (11, 22, 33, 44, 1312, 14l3, 3’4, 1515))

and the slice

1 input(n, a);
2 i:=I;

3 while i < n do begin
4 min := u[i];

13 u[i] := min;
14 i:=i+I;

end,
is output(a);

In contrast to the above example, a static slice
[24] derived for a similar slicing criterion C =
(15, {a}) for the program of Fig. 1 is the entire
program itself. This illustrates the fact that dy-
namic slices are, in general, smaller than static
ones. There is, however, a price for this advantage:
dynamic slice cannot be used to support reasoning
about all possible computations w.r.t. a selected
set of variables in the program.

5. Conclusions

Although the idea of dynamic program analysis
is not new [4,8,11,25], that of dynamic slicing is: It
originated during experiments with a recently im-
plemented System for Testing and Debugging
(STAD) [14,16]. The main advantage of dynamic
slicing is that the size of a slice can be signifi-
cantly reduced by the identification of those state-
ments in the program that do not have influence
on the variables of interest. This is achieved by
dynamic analysis based on the program execution
trajectory.

Some related works in the area of dependence-
based modeling have been reported in the litera-

www.manaraa.com

Volume 29, Number 3 INFORMATION PROCESSING LETTERS 26 October 1988

ture. Most of them deal with dependencies be-
tween data items [6]. Additionally, control in-
fluence is introduced for constructing program
slices [24], for optimization [21], and for static
program testing [12]. However, all these models
are static, derived from a control flowgraph. The
model presented in this paper is dynamic [ll]
because it is derived mainly from the program

execution trajectory.
In the case of arbitrary control flow, the scope

of influence can be derived by using the concept
of the nearest inverse dominator of test instruc-
tions [5,18]. However, for structured programs, the
scope of influence can be determined during syn-
tax analysis, as was done in STAD [14].

A promising area of research involves dynamic
slicing for pointer variables. Pointers create unique
problems since the pointer variable actually repre-
sents two variables: the pointer itself and the
object pointed to by it. Nameless variables (ob-
jects) of a given type are created by calling the
standard procedure new(p) which is, in fact, a
dynamic declaration of the object involved: A
storage is reserved for an object but no value is
assigned to it. It is impossible to identify dynamic
objects by means of static analysis. In contrast, by
applying a dynamic analysis, a list of dynamic
variables might be created and manipulated dur-
ing program execution. In this manner, it is possi-
ble to determine which dynamic objects are
pointed to be pointer variables at every point of
program execution. It is also possible to determine
which objects (dynamic variables) are used or
modified at every point of program execution.

References

PI

121

131

141

[51

A.V. Aho and J.D. Ullman, Prmciples of Compiler Design

(Addison-Wesley, Reading, MA, 1977).

J.M. Barth, A practical interprocedural data flow analysis

algorithm, Comm. ACM 21 (9) (1978) 724-736.

J.F. Bergeretti and B.A. Carre, Information-flow and

data-flow analysis of while-programs, ACM Trans. Pro-

gramming Languages & Systems 7 (1) (1985) 37-61.
F.T. Chan and T.Y. Chen, AIDA-A dynamic data flow

anomaly detection system for PASCAL programs, Soft-

ware- Practice & Experience 17 (3) (1987) 227-239.

D.E. Denning and P.J. Denning, Certification of pro-

grams for secure information flow, Comm. ACM 20 (7)
(1977) 504-513.

1’31

[71

181

191

Ito1

1111

WI

[I31

u41

[I51

[I61

1171

1181

u91

[201

[211

L221

1231

[241

[251

L.D. Fosdick and L.J. Osterweil, Data flow analysis in
software reliability, Comput. Surveys 8 (1976) 305-330.

M.S. Hecht, Flow Analysis of Computer Programs (North-

Holland, Amsterdam, 1977).

J.C. Huang, Detection of data flow anomaly through

program instrumentation, IEEE Trans. Softwure Engrg.

SE-5 (3)(1979)226-236.

C.B. Jones, Software Development, A Rigorous Approach

(Prentice-Hall, Englewood Cliffs, NJ, 1980).

K. Kennedy, A comparison of two algorithms for global

data flow analysis, SIAM J. Comput. 5 (1976) 158-180.

B. Korel, Dependence-Based Modelling in the Automation

of the Error Localization in Computer Programs, Ph.D.

Thesis, School of Engineering and Computer Science,

Oakland Univ., Rochester, MI, August 1986.

B. Korel, The program dependence graph in static pro-

gram testing, Znform. Process. Lett. 24 (2) (1987) 103-108.

B. Korel and J. Laski, A tool for data flow oriented

program testing, Softfarr ZZ, 2nd Conf. on Software Devel-

opment, Tools, Techniques, and Alternatives, San Francisco,

CA (December 1985) 34-38.

B. Korel and J. Laski, STAD - A System for Testing and

Debugging, Tech. Rept. TR-CSE-87-08, School of En-
gineering and Computer Science, Oakland Univ., Roches-

ter, MI, August 1987.

J.W. Laski, A hierarchical approach to program testing,

SZGPLAN Notices 15 (1980) 77-85.

J. Laski, Data Flow Testing of Computer Programs, Tech.

Rept. TR-CSE-87-06, School of Engineering and Com-

puter Science, Oakland Univ., Rochester, MI, June 1987.

J.W. Laski and B. Korel, A data flow oriented program

testing strategy, IEEE Truns. Software Engrg. SE-9 (3)

(1983) 347-354.

T. Lengauer and R.E. Tarjan, A fast algorithm for finding

dominators in a flowgraph, ACM Trans. Programmrng

Languages & Systems 1 (1979) 121-141.

H.D. Longworth, L.M. Ottenstein and M.R. Smith, The

relationship between program complexity and slice com-

plexity during debugging tasks, 10th Internat. Computer

Software & Applications Cant (COMSAQ-86), Chicago,

IL (October 1986) 383-389.

S.S. Muchnick and N.D. Jones, Program Flow Analysis;

Theory and Applications (Prentice-Hall, Englewood Cliffs,

NJ, 1981).

K.J. Ottenstein and L.M. Ottenstein, The program depen-

dence graph in a software development environment, ACM

SZGPLAN Notices 19 (5) (1984) 177-184.

B.K. Rosen, Data flow analysis for procedural languages,

J. ACM 26 (2) (1979) 322-344.

M. Weiser, Programmers use slices when debugging,

Comm. ACM 25 (1982) 446-452.

M. Weiser, Program slicing, IEEE Trans. Software Engrg.

SE-10 (4) (1984) 352-357.

N.H. White and K.H. Bennett, Run-time diagnostic in

PASCAL, Software-Practice & Experience 15 (4) (1985)
359-367.

163

