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A dynamic program slice is an executable subset of the original program that produces the same computations on a subset 
of selected variables and inputs. It differs from the static slice (Weiser, 1982, 1984) in that it is entirely defined on the basis of 

a computation. The two main advantages are the following: Arrays and dynamic data structures can be handled more 

precisely and the size of slice can be significantly reduced, leading to a finer localization of the fault. The approach is being 

investigated as a possible extension of the debugging capabilities of STAD, a recently developed System for Testing and 

Debugging (Korel and Laski, 1987; La&i, 1987). 
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1. Introduction 

A slice S of a program P is an executable 
subset of P that computes the same function as P 

does in a subset of variables, at some selected 
point of interest [19,23,24]. Slicing has been shown 
useful in program debugging by narrowing the size 
of the suspected piece of incorrect code. As origi- 
nally introduced [23,24], it is a static concept: it 
involves all potential terminating program execu- 
tions, including those which are infeasible. In de- 
bugging practice, however, we typically deal with 
a particular incorrect execution and, consequently, 
are interested in locating the cause of incor- 
rectness (programming fault) of that execution. 
For this reason we are interested in a slice that 
preserves the program’s behavior for a specific 
input, rather than that for the set of all inputs for 
which the program terminates. This type of pro- 

* This research was partly supported by the National Science 
Foundation under Grant No. ECS-82-18072. 

gram slice, which we call a dynamic one, is intro- 
duced in this paper. 

It is shown that dynamic slicing provides a 
finer localization information. A static slice very 
often contains statements which have no influence 
on the values of variables of interest. A dynamic 
slice can be considered a refinement of the static 
one: By applying dynamic analysis it is easier to 
identify those statements in the static slice which 
do not have influence on the variables of interest. 
By reducing the searching space for the fault in 
the program, one can more efficiently localize it. 

In this paper we also investigate the dynamic 
handling of arrays in slicing. In the static ap- 
proach, an entire array is treated as a single varia- 
ble, i.e., each definition or use of any array ele- 
ment is treated as a definition or use of the entire 
array. While this method is easy to implement, it 
fails to take into account any information about 
particular array elements. This can lead to the 
inclusion of statements which do not have any 
influence on the values of certain array elements. 
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As a result, the slice can be unnecessarily large. In 
our approach, every array element is treated as a 
separate variable. This is due to the fact that, 
during program execution, it is possible to de- 
termine the value of an array subscript and, there- 
fore, to determine which array elements are used 
or modified at every point of program execution. 
In the concluding Section 5 we also comment on a 
possible application of the method to other struc- 
tured data. 

The reader is assumed to be familiar with the 
original static concept of program slicing [23,24]. 
In what follows, + stands for set union. 

2. Background 

A flowgraph of a program P is a directed 
graph C = (N, A, en, ex), where N is a set of 
nodes, A is a binary relation on N (a subset of 
N x N) referred to as the set of arcs, and en and 

ex are, respectively, a unique entry and a unique 
exit node, en, ex E N. 

For the sake of simplicity we restrict our analy- 
sis to a subset of structured PASCAL-like program- 
ming language constructs, namely: sequencing, 
if-then-else, and while-loop. A node in N corre- 
sponds to a smallest, not further decomposable, 
single-entry single-exit executable part of a state- 
ment in P, referred to as an instruction. It can be, 
for example, an assignment statement, an input or 
an output statement, or the (expression) part of 
an if-then-else or while statement, in which case 
it is called a test instruction. 

An arc (n, m) E A corresponds to a possible 
transfer of control from instruction n to instruc- 
tion m. A path from the entry node en to some 
node I, I E N, is a finite sequence (n,, n2,. . . , n4) 

of instructions, such that n, = en, n4 = 1, and 

(nrr ni+l> is in A for all ni, 1 < i < q. If n4 = ex, 

then the path is a program path. A path is feasible 

if there exists input data which causes the path to 

var n, i, j, p: integer; a: array[l..lO] of integer; 

1 
2 

3 
4 

5 

6 

7 
8 

9 
10 

11 

12 
13 
14 

15 

input(n,a); 
i:= I; 

while i < n do begin 
ruin := a[i]; 
p := i; 

j:= j+1; 

while j < = n do begin 

if a[ j] < min then begin, 
min := a[ j]; 
p:=j; 

end; 
j:=j+ 1; 

end; 
a[p] := a[i]; 

a[i] := min; 
j:= j+l; 

end; 
output(a); 

Fig. 1. A sorting program. 
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Instruction Instruction 

number text 

1’ input( n, a) 
22 i := 1 

33 i<n 

44 mix-i := * a[i] / min := a[l] * / 

Zj5 p := i 

66 j:=i+l 

7’ j< =?I 

8’ a[j] < min /* a[2]<min*/ 
119 j:=j+ 1 

7 10 j< =,, 

12” a[pJ := a[i] / * a[11 := a[11 * / 

1312 u[i] / := min * a[11 := min * / 
1413 i:=i+ 1 

3 14 i<tl 

1515 output(u) 

Trajectory T= (1, 2, 3, 4, 5, 6, 7, 8, 11, 7, 12, 13, 14, 3, 15) 

Fig. 2. A trajectory of the program from Fig. 1 on input data n = 2, a = (2.4). 

be traversed during program execution. A feasible 
path that has actuahy been executed for some 
input will be referred to as a trajectory. For exam- 
ple, if the program in Fig. 1 is executed on the 
input i = (n, a) = (2, (2, 4)), the trajectory T in 
Fig. 2 is traversed. An executed program path is a 
program trajectory. Observe that a trajectory can 
be an initial (finite) segment of an ‘infinite’ path if 
the execution involved does not terminate. 

In the deterministic case, the trajectory is 
uniquely determined by the input while in the 
nonderministic case (e.g., referencing an uninitial- 
ized variable) there might be many trajectories for 
the same input. In either case, however, there are 
many inputs that give rise to the same trajectory. 
In what follows we assume the deterministic case. 

Notationally, T is an abstract list [9] whose 

elements are accessed by position, for example, for 
T in Fig. 2 we have T(5) = 5, T(9) = 11, and 
T(14) = 3. To handle multiple occurrences of the 
same instructions in the trajectory (for instance, 
instruction 3 appears twice in T in Fig. 2), every 
instruction is characterized by its position in the 

sequence. Let N(T) be the set of pairs (instruction 
in T, its position in T) defined as follows: 

N(T)= {(X, p): XEN, T(p)=X}. 

An (X, p) will be written down as XP and inter- 
preted as “an instruction X at the execution posi- 
tion p”. For instance, 33 and 314 are two occur- 
rences of instruction 3 in the trajectory T shown 
in Fig. 2. 

The following dataflow concepts are of dy- 
namic nature because they are defined with re- 
spect to the trajectory T, rather than to the flow- 
graph itself. 

A use of variable u is an instruction Xp in 
which this variable is referenced. A definition of 
variable u is an instruction Xp which assigns a 
value to that variable. 

In the framework of static program analysis, an 
assignment to an array element is treated as a 
definition of the entire array. This does not seem a 
real obstacle in program optimization, the first 
area of application of data flow analysis [1,2,3,7, 
lo]. It does cause serious problems, however, in 
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1 i:=l. 

2 j:=21 

3 read(k); 
4 while i < 3 do begin 

5 a[i] := a[ j] * a[/~]; 

6 i:=i+l; 

7 j:=j+$ 

8 k:=k+3; 
end; 

T= (1, 2, 3, 4, 5,6, 7, 8, 4, 5, 6, 7, 8, 4) 

Fig. 3. A sample program and a trajectory for k = 2. 

data flow testing and debugging, where it is highly 
desirable to identify the particular array entries 
manipulated by the program [ll-171. It is pre- 
cisely what the dynamic approach makes possible. 
In it, every array element is treated as a separate 
variable. For example, the following is the set of 
all variables in the program in Fig. 1, 

{n, i, j, P, mm, a[l], a[2],..., a[lo]}. 

Let U( Xp) be the set of variables whose values 
are used in Xp and D( Xp) be the set of variables 
whose values are defined in Xp. It is essential to 
observe that, unlike their static counterparts, these 
sets are dynamic. Clearly, given two occurrences 
Xp and X4 of the same instruction X, these sets 
might be different in each case. If X handles an 
array, and every array element is treated as a 
separate variable, then at each execution of X 
different entries in the array might be used or 
defined. For example, during the first execution of 
instruction 5 of the program of Fig. 3 the follow- 
ing variables are used and defined: 

u(55) = {i, j, k, a[2]}, D(55) = { u[l]}. 

However, during the second execution of the same 
instruction, we have 

u(5”) = {i, j, k, a[4], a[5l>, 

D(5’O)= {u[2]}. 
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The dynamic nature of the sets U and D is in 
contrast with their counterparts in static analysis. 
In the case of our simple language it is due to the 
dynamic treatment of arrays. For example, the 
static analysis of the program in Fig. 3 would 
render 

u(5) = {a, j, j, k}, D(5) = {u}. 

It is worth noting, however, that if nodes in the 
graph correspond to procedure calls or some 
single-entry single-exit compound statements 
rather than instructions, the dynamic parts of the 
sets U and D might also involve scalar variables. 

It is assumed that the sets U and D for each 
instruction in the trajectory can be identified 
through program instrumentation. 

2.1. Definition. Given a trajectory T, an instruc- 
tion Xp is the lust definition of variable u at 
execution position q in T iff u E D( XJ’) and, for 
all k, p<k<q, uPD(Yk). 

The last definition XP of u at q is then the 
unique instruction which has last assigned a value 
to variable u when q is reached on T. For in- 
stance, in the execution trace of Fig. 2, 22 is the 
last definition of variable i at execution position 
6. 

The last definition is also a reaching one in the 
static sense [8]. The opposite, however, is not 
necessarily true. A reaching definition is defined 
in terms of the flowgraph only, rather than in 
those of a trajectory. Therefore, it is only poten- 
tially last and, moreover, it might also be infeasi- 
ble. 

3. Dynamic slice 

Intuitively, a dynamic slice is an executable 
part of the program whose behavior is identical to 
that of the original program with respect to a 
subset of variables of interest and at execution 
position q. Such a ‘view of interest’ is captured by 
the following definition. 

3.1. Definition. Let T be the trajectory of program 
P on input x. A slicing criterion of program P 
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executed on input x is a triple C = (x, Zq, V), 
where Z is an instruction at position q on T and V 
is a subset of variables in P. 

Observe that the corresponding static slicing 
criterion [24] is just a pair (I, V). Clearly, our 
slicing criterion is defined w.r.t. a given trajectory 
on a specific input x rather than w.r.t. the set of 
all possible paths in the flowgraph. Yet another 
difference is in the interpretation of the ‘position 
of interest’. In the static case, this is instruction I 
in P; in our case, this is instruction Z at execution 

position q in trajectory T. 
Typically, the set V contains those variables in 

the program that have been found incorrect at q. 
The slice is then used to locate the cause of the 
incorrectness. I/ might be, however, a set of varia- 
bles that are correct at q, too; the slice might then 
be used for verification purposes. 

To formally define the dynamic slice we need 
some definitions of list operations. 

Let T= (X,, X,,..., X,) be a trajectory of 
length m and let q be a position in T, 1 6 q 6 m. 
By F(T, q) we denote the front of T w.r.t. q, i.e., 
a sublist (X,, X,,..., X4), containing the first q 
elements of T [9]. Correspondingly, B(T, q), the 
back of T w.r.t. q, is the sublist (X,+1,. . . , X,), 
containing elements that follow T(q). We have, of 
course, T = F(T, q) 11 B(T, q), where 11 stands for 
the concatenation of lists. By DEL(T, r), where r 
is a predicate on the set of instructions in T, we 
mean a subtrajectory obtained from T by deleting 
from it all elements T(i) that satisfy r. In other 
words, DEL(T, r) is the result of an exhaustive 
application of the delete operation to elements 
T(i) that satisfy r(T(i)). 

3.2. Definition. Let C = (x, 14, V) be a slicing 
criterion of program P and T a trajectory of P on 
input x. A dynamic slice of P on C is any executa- 
ble program P’ that is obtained from P by delet- 
ing zero or more statements from it and, when 
executed on input x, produces a trajectory T’ for 
which there exists an execution position q’ such 
that: 

(1) F(T’, q’) = DEL(F(T, q), T(i) 65 N’ and 

1 <iGq), 

(2) for all u E V, the value of u before the 
execution of instruction T(q) in T equals the 
value of u before the execution of instruction 

T’(q’) in T’, 

(3) T’(d) = T(q) = 1, 
where N’ is a set of instructions in P’. 

The following observations clarify some salient 
properties of the dynamic slice. 

First, a dynamic slice partially replicates the 

front of T (w.r.t. q). Clearly, we are interested in 
the partial reproduction of the behavior of pro- 
gram P up to the execution position q. Moreover, 
dynamic slice preserves the number of occurrences 
of instructions in the trajectories T and T’. For 
instance, if a loop in P iterates five times, then we 
require that the same loop, if included in P’, also 
iterates five times. But, these requirements do not 
necessarily hold for the back of T and T’ (past 
the execution positions q and q’, respectively). 
Indeed, the absence of some instructions in P’ 
might cause unpredictable control flow patterns in 
T’ when the execution continues past q’. 

Second, it is required that instruction Zq appear 
in the slice. This is in contrast to the static defini- 
tion of slice in which that instruction does not 
necessarily appear [24]. Our experience with static 
slices shows that the programmer can be lost if 
statement Z is not included in the slice, particu- 
larly if Z is in a loop. We feel therefore that 
including it into the slice is more realistic for 
debugging purposes. 

Third, the fact that all variables in V have the 
same values at q in T and at q’ in T’ does not 
necessarily guarantee that variables not in V will 
have the same values at those positions nor that 
those in V itself will have the same values along T 
and T’ (except at q and q’). 

There can be many different dynamic slices for 
a given program and a slicing criterion, and there 
is always at least one such a slice: The entire 
program itself. 

3.3. Definition. Let C be a slicing criterion of 
program P executed on input x. A dynamic slice 
DS of P on C is statement-minimal if no other 
dynamic slice of P on C has fewer statements 
than DS. 
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As in the case of static slices, the problem of 
finding statement-minimal dynamic slice is unde- 
cidable [24]. However, data flow analysis can be 
used to construct conservative slices, guaranteed 
to have the slice properties but with, perhaps, too 
many statements. 

4. Finding dynamic slice 

Intuitively, given a slicing criterion C = (x, Iq, 

V), a dynamic slice contains only those instruc- 
tions from N that (i) influence the variables in V 
at 4, and (ii) appear in T. Data flow analysis 
along T can help in finding them by tracing back- 
wards some well-defined dependencies between 
instructions in T. This can be done in two steps. 
First, find a subtrajectory T’ of T that meets the 
criteria of Definition 3.2 and then reconstruct a 
P’ from T’. 

The identification of T’ is equivalent to find- 
ing a subset of N(T) that contains all instructions 
in the trajectory T which have influence on V at q 

and guarantee that I4 is reached in the first place. 
Such a subset will be referred to as the slicing set, 

denoted S,. 
To capture the intuitive notion of influence we 

introduce two types of dependence relations be- 
tween program instructions in the trajectory T. 

These relations formally define the properties that 
instructions in N(T) must meet to be in a slice. 
The relations are constructive in the sense that 
they can be used to formulate an algorithm, how- 
ever inefficient it might be [ll]. 

Let C = (x, Zq, V) be a slicing criterion. In 
what follows we introduce two types of influences 
(dependences) between instructions in the front of 
T w.r.t. q. Those are the Data-Data and Test- 
Control binary relations on N,(T), where 

NC(T)={XP:XP~N(T)andl~p<q}. 

Clearly, we are only interested in the instructions 
in the front of the trajectory T, up to the execu- 
tion position q. 

The DD (Data-Data) Relation. The DD relation 
models a situation where one instruction assigns a 
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DD(1’) = {33, 44, 7’, 8’, 7”, 1211, 314, 1515} 
DD(22) = {33, 44, 55, 66, 1211, 1312, 1413} 
DD(44) = {8’, 1312} 
DD(55) = {1211} 
DD(66) = {7’, 8*, 119} 
DD(119) = {71°} 
DD(1312) = {1515} 
DD(1413) = { 314} 

Fig. 4. The DD relation for the trajectory of Fig. 2 and the 

slicing criterion C = (x, 1515, (a[2])), where x = (n, a) = 

(2, (2,4)). Notation: DD(k) = {I: k DD I). 

value to an item of data and the other instruction 
uses that value. For instance, in the execution 
trace of Fig. 2, instruction 22 assigns a value to 
variable i and instruction 66 uses that value. 
’ DD is a binary relation on N,(T) defined as 

follows: 

Xp DD y’, 1 <p < t < q, iff there exists a 
variable u such that: (1) u E U(y’), and (2) 
Xp is the last definition of u at t. 

Fig. 4 shows the DD relation for the trajectory 
in Fig. 2 and the slicing criterion C = (x, 1515, 

{@II). 
Observe that, appearances to the contrary, the 

DD relation is not a subset of the set of static 
definition-use chains [7]. 

The TC (Test-Control) Relation. The TC relation 
captures the dependence between test instructions 
and the instructions which can be chosen to ex- 
ecute or not execute by these test instructions. For 
instance, test instruction 8 in the program of Fig. 
1 has ‘influence’ on the execution of instruction 9, 
but it has no influence on the execution of instruc- 
tion 11. To define the TC relation, we need the 
following notion of the scope of influence for the if 
and while statements [ll]. 

(4 if X then Bl else B2; instruction Y is in the 
scope of influence of X iff Y appears in Bl or 
B2, 
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TC(33) = {44, ?, 66, 77, g8, 119, 71°, 1211, 1312, 1413, 314} 
TC(77) = {8’, 119, 71°} 
TC(314) = TC(71°) = { } 

Fig. 5. TC relation for the program of Fig. 1 and the slicing criterion C = (x, 1515, (a[Z]}), x = (n, a) = (2, (2,4)). 

(b) while X do B; instruction Y is in the scope of 
influence of X iff Y is in B or X= Y. 

In the program of Fig. 1, instruction 6 is in the 
scope of influence of test instruction 3, but in- 
struction 15 is not in the scope of influence of 
instruction 3. Observe that the test instruction X 
of a while-loop is in the scope of influence of itself 
because every execution of X has influence on the 
next execution of X. For instance, in the trajectory 
of Fig. 2 the outcome of the test instruction 33 
influences the execution of 314. 

TC is a binary relation on N,(T) defined as 
follows: 

XPTCy’, lgp<t<q, iff (1) Y is in the 
scope of influence of X, and (2) for all k, 

p < k -c t, T(k) is in the scope of influence 
of x. 

The TC relation for the trajectory in Fig. 2 is 
shown in Fig. 5. 

The relations DD and TC capture the in- 
fluences that exist between instructions in the 
trajectory. They fail, however, to guarantee that 
the number of occurrences of an instruction in T 

(between 1 and q) and T’ (between 1 and q’) are 
the same, a property that follows from condition 
(1) of Definition 3.2. Towards that goal we define 
the Zdentity Relation IR on N,(T) as follows: 

XP IRy’, 1 <p, t < q, iff X= Y. 

For example, for the trajectory of Fig. 2 we have 
33 IR 314 and 7’ IR71°; observe that IR is symmet- 
ric, for example 314 IR 33 holds, too. 

To find S, we first find a set A0 of all instruc- 
tions that have a direct influence on V at q and on 
the execution of instruction Zq. We have 

A0 = LD(q, V) + LT(Zq), 

where LD(q, V) is the set of last definitions of 
variables in V at execution position q, and LT( Zq) 

is the set of test instructions which have control 
influence on the execution of Z4. More formally, 
we can state 

LD(q, v) = { xp EN,-(T):thereexistsa UE V 

such that xp is the last definition of u at q } 

and 

LT(Zq)= {X-&(T): Xp TCZq}. 

We will find S, iteratively, as a limit of the 
sequence So, S’, . . . , S”, 0 6 n c q, defined as fol- 
lows: 

so = AO, 
s'+l = s’+A’+l, 

where 

A I+1 = {X”E&.(T): 

(1) XP $G S’, and 

(2) thereexistsa Y’EA’, p, t<q, 

xp (DD+TC+IR) y’}. 

The sets S’, i = 0, 1,. . . , k, can be thought of as 
an increasing sequence of successive approxima- 
tions of S,. Each S’ is bounded from above by 
N,(T). Eventually, because T is finite, there is an 
Aktl = { }, for some k. If the above recursive 
definition is the basis for a corresponding search 
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process, that process will always terminate. 
According to the postulated properties of a dy- 
namic slice in Section 3, instruction P must also 
be included in S,. The following will guarantee its 
inclusion in the slice: 

S,=Pf {P}, 

where Sk is the limit of sequence {S’}. 
The (disjoint) sets A’, i = 0, 1,. . . , n, contain 

those instructions that have i-level influence on V 
at q. Clearly, instructions in A0 have direct in- 
fluence on V at q. Instructions in A’, i > 0, have 
indirect influence on I/’ at q by directly influenc- 
ing those in A’-‘. Intuitively, the slicing set con- 
tains instructions that have direct or indirect in- 
fluence on I’ at q and the execution of Iq. 

Given S,, the slice is found in a straightfor- 
ward way: Inspect instructions in P and select 
only those which appear at least once in the 
slicing set. Needless to say, to ensure syntactical 
correctness all necessary declarations are to be 
selected, too. 

Example. Consider again the trajectory T in Fig. 
2. For the criterion 

Cl = (X’ 1515, { a[2]}), 

x = (n, a) = (2, (294)) 

we have 

LD(l5, { a[2]}) = {I’}, LT(159 = { }, 

A0 = {l’}, so= {l’}, A’={ >, 

s,, = so+ (1515) = (11, 15i5}, 

and, finally, the dynamic slice 

1 input(n, a); 
15 output(u); 

For the slicing criterion 

c2 = (X’ 1515, { u[l]}) 

we have 

LD(15, { u[l]}) = {1312}, LT(1515) = { }, 

A0 = {1312}, so = {13i2}, 

A’ = (22, 33,44}, 
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s’ = (22, 33, 44, 13’2}, 

A2 = {l’, 314}, 

s* = (11, 22, 33, 44, 1312, 3i4}, 

A3 = {1413}, 

s3 = (11, 22, 33, 44, 1312, 1413, 314 }) 

A4= { }, 

SC2 = s3 + (1515) 

= (11, 22, 33, 44, 1312, 14l3, 3’4, 1515)) 

and the slice 

1 input(n, a); 
2 i:=I; 

3 while i < n do begin 
4 min := u[i]; 

13 u[i] := min; 
14 i:=i+I; 

end, 
is output(a); 

In contrast to the above example, a static slice 
[24] derived for a similar slicing criterion C = 
(15, {a}) for the program of Fig. 1 is the entire 
program itself. This illustrates the fact that dy- 
namic slices are, in general, smaller than static 
ones. There is, however, a price for this advantage: 
dynamic slice cannot be used to support reasoning 
about all possible computations w.r.t. a selected 
set of variables in the program. 

5. Conclusions 

Although the idea of dynamic program analysis 
is not new [4,8,11,25], that of dynamic slicing is: It 
originated during experiments with a recently im- 
plemented System for Testing and Debugging 
(STAD) [14,16]. The main advantage of dynamic 
slicing is that the size of a slice can be signifi- 
cantly reduced by the identification of those state- 
ments in the program that do not have influence 
on the variables of interest. This is achieved by 
dynamic analysis based on the program execution 
trajectory. 

Some related works in the area of dependence- 
based modeling have been reported in the litera- 
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ture. Most of them deal with dependencies be- 
tween data items [6]. Additionally, control in- 
fluence is introduced for constructing program 
slices [24], for optimization [21], and for static 
program testing [12]. However, all these models 
are static, derived from a control flowgraph. The 
model presented in this paper is dynamic [ll] 
because it is derived mainly from the program 

execution trajectory. 
In the case of arbitrary control flow, the scope 

of influence can be derived by using the concept 
of the nearest inverse dominator of test instruc- 
tions [5,18]. However, for structured programs, the 
scope of influence can be determined during syn- 
tax analysis, as was done in STAD [14]. 

A promising area of research involves dynamic 
slicing for pointer variables. Pointers create unique 
problems since the pointer variable actually repre- 
sents two variables: the pointer itself and the 
object pointed to by it. Nameless variables (ob- 
jects) of a given type are created by calling the 
standard procedure new(p) which is, in fact, a 
dynamic declaration of the object involved: A 
storage is reserved for an object but no value is 
assigned to it. It is impossible to identify dynamic 
objects by means of static analysis. In contrast, by 
applying a dynamic analysis, a list of dynamic 
variables might be created and manipulated dur- 
ing program execution. In this manner, it is possi- 
ble to determine which dynamic objects are 
pointed to be pointer variables at every point of 
program execution. It is also possible to determine 
which objects (dynamic variables) are used or 
modified at every point of program execution. 
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